Maximal dismounts from high bar.
نویسندگان
چکیده
In men's artistic gymnastics the triple straight somersault dismount from the high bar has yet to be performed in competition. The present study used a simulation model of a gymnast and the high bar apparatus (J. Appl. Biomech. 19(2003a) 119) to determine whether a gymnast could produce the required angular momentum and flight to complete a triple straight somersault dismount. Optimisations were carried out to maximise the margin for error in timing the bar release for a given number of straight somersaults in flight. The amount of rotation potential (number of straight somersaults) the model could produce whilst maintaining a realistic margin for error was determined. A simulation model of aerial movement (J. Biomech.23 (1990) 85) was used to find what would be possible with this amount of rotation potential. The model was able to produce sufficient angular momentum and time in the air to complete a triple straight somersault dismount. The margin for error when releasing the bar using the optimum technique was 28 ms, which is small when compared with the mean margin for error determined for high bar finalists at the 2000 Sydney Olympic Games (55 ms). Although the triple straight somersault dismount is theoretically possible, it would require close to maximum effort and precise timing of the release from the bar. However, when the model was required to have a realistic margin for error, it was able to produce sufficient angular momentum for a double twisting triple somersault dismount.
منابع مشابه
The margin for error when releasing the asymmetric bars for dismounts.
It has previously been shown that male gymnasts using the "scooped" giant circling technique were able to flatten the path followed by their mass center, resulting in a larger margin for error when releasing the high bar (Hiley and Yeadon, 2003a). The circling technique prior to performing double layout somersault dismounts from the asymmetric bars in women's artistic gymnastics appears to be s...
متن کاملThe margin for error when releasing the high bar for dismounts.
In Men's Artistic Gymnastics the current trend in elite high bar dismounts is to perform two somersaults in an extended body shape with a number of twists. Two techniques have been identified in the backward giant circles leading up to release for these dismounts (J. Biomech. 32 (1999) 811). At the Sydney 2000 Olympic Games 95% of gymnasts used the "scooped" backward giant circle technique rath...
متن کاملOptimisation of high bar circling technique for consistent performance of a triple piked somersault dismount.
The dismount from the high bar is one of the most spectacular skills performed in Men's Artistic Gymnastics. Hiley and Yeadon [2005. Maximal dismounts from high bar. Journal of Biomechanics 38, 2221-2227] optimised the technique in the backward giant circle prior to release using a computer simulation model to show that a gymnast could generate sufficient linear and angular momentum to perform ...
متن کاملConsistency of performance in the Tkatchev release and re-grasp on high bar
The Tkatchev on the high bar is a release and re-grasp skill in which the gymnast rotates in a direction during flight opposite to that of the preceding swing. Since the release window is defined as the time during which the gymnast has appropriate linear and angular momentum to ensure the bar can be re-grasped, it was speculated that the release windows for this skill would be smaller than for...
متن کاملTwisting double somersault high bar dismounts
At the 1988 Seoul Olympic Games, four double somersaults dismounts with one twist and four double somersault dismounts with two twists were filmed using two 16 mm cameras during the men’s horizontal bar competition. Contributions to tilt angles reached at the mid-twist position, determined using computer simulations based on modifications of the data obtained from film, were used as measures of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 38 11 شماره
صفحات -
تاریخ انتشار 2005